Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment.

Identifieur interne : 001136 ( Main/Exploration ); précédent : 001135; suivant : 001137

Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment.

Auteurs : Thomas Auxenfans [France] ; David Crônier [France] ; Brigitte Chabbert [France] ; Gabriel Paës [France]

Source :

RBID : pubmed:28191037

Abstract

BACKGROUND

Biorefining of lignocellulosic biomass has become one of the most valuable alternatives for the production of multi-products such as biofuels. Pretreatment is a prerequisite to increase the enzymatic conversion of the recalcitrant lignocellulose. However, there is still considerable debate regarding the key features of biomass impacting the cellulase accessibility. In this study, we evaluate the structural and chemical features of three different representative biomasses (

RESULTS

Regardless the biomass type, combined steam explosion pretreatment with dilute sulfuric acid impregnation resulted in significant improvement of the cellulose conversion. Chemical analyses revealed that the pretreatment selectively degraded the hemicellulosic fraction and associated cross-linking ferulic acids. As a result, the pretreated residues contained mostly cellulosic glucose and lignin. In addition, the pretreatment directly affected the cellulose crystallinity but these variations were dependent upon the biomass type. Important chemical modifications also occurred in lignin since the β-

CONCLUSIONS

Our findings provide an enhanced understanding of parameters impacting biomass recalcitrance, which can be easily generalized to both woody and non-woody biomass species. Results indeed suggest that the hemicellulose removal accompanied by the significant reduction in the cross-linking phenolic acids and the redistribution of lignin are strongly correlated with the enzymatic saccharification, by loosening the cell wall structure thus allowing easier cellulase accessibility. By contrast, we have shown that the changes in the syringyl/guaiacyl ratio and the cellulose crystallinity do not seem to be relevant factors in assessing the enzymatic digestibility. Some biomass type-dependent and easily measurable FTIR factors are highly correlated to saccharification.


DOI: 10.1186/s13068-017-0718-z
PubMed: 28191037
PubMed Central: PMC5297051


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment.</title>
<author>
<name sortKey="Auxenfans, Thomas" sort="Auxenfans, Thomas" uniqKey="Auxenfans T" first="Thomas" last="Auxenfans">Thomas Auxenfans</name>
<affiliation wicri:level="4">
<nlm:affiliation>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
<orgName type="university">Université de Reims Champagne-Ardenne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cronier, David" sort="Cronier, David" uniqKey="Cronier D" first="David" last="Crônier">David Crônier</name>
<affiliation wicri:level="4">
<nlm:affiliation>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
<orgName type="university">Université de Reims Champagne-Ardenne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chabbert, Brigitte" sort="Chabbert, Brigitte" uniqKey="Chabbert B" first="Brigitte" last="Chabbert">Brigitte Chabbert</name>
<affiliation wicri:level="4">
<nlm:affiliation>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
<orgName type="university">Université de Reims Champagne-Ardenne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Paes, Gabriel" sort="Paes, Gabriel" uniqKey="Paes G" first="Gabriel" last="Paës">Gabriel Paës</name>
<affiliation wicri:level="4">
<nlm:affiliation>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
<orgName type="university">Université de Reims Champagne-Ardenne</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28191037</idno>
<idno type="pmid">28191037</idno>
<idno type="doi">10.1186/s13068-017-0718-z</idno>
<idno type="pmc">PMC5297051</idno>
<idno type="wicri:Area/Main/Corpus">001445</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001445</idno>
<idno type="wicri:Area/Main/Curation">001445</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001445</idno>
<idno type="wicri:Area/Main/Exploration">001445</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment.</title>
<author>
<name sortKey="Auxenfans, Thomas" sort="Auxenfans, Thomas" uniqKey="Auxenfans T" first="Thomas" last="Auxenfans">Thomas Auxenfans</name>
<affiliation wicri:level="4">
<nlm:affiliation>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
<orgName type="university">Université de Reims Champagne-Ardenne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cronier, David" sort="Cronier, David" uniqKey="Cronier D" first="David" last="Crônier">David Crônier</name>
<affiliation wicri:level="4">
<nlm:affiliation>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
<orgName type="university">Université de Reims Champagne-Ardenne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chabbert, Brigitte" sort="Chabbert, Brigitte" uniqKey="Chabbert B" first="Brigitte" last="Chabbert">Brigitte Chabbert</name>
<affiliation wicri:level="4">
<nlm:affiliation>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
<orgName type="university">Université de Reims Champagne-Ardenne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Paes, Gabriel" sort="Paes, Gabriel" uniqKey="Paes G" first="Gabriel" last="Paës">Gabriel Paës</name>
<affiliation wicri:level="4">
<nlm:affiliation>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Champagne-Ardenne</region>
<settlement type="city">Reims</settlement>
</placeName>
<orgName type="university">Université de Reims Champagne-Ardenne</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Biorefining of lignocellulosic biomass has become one of the most valuable alternatives for the production of multi-products such as biofuels. Pretreatment is a prerequisite to increase the enzymatic conversion of the recalcitrant lignocellulose. However, there is still considerable debate regarding the key features of biomass impacting the cellulase accessibility. In this study, we evaluate the structural and chemical features of three different representative biomasses (</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Regardless the biomass type, combined steam explosion pretreatment with dilute sulfuric acid impregnation resulted in significant improvement of the cellulose conversion. Chemical analyses revealed that the pretreatment selectively degraded the hemicellulosic fraction and associated cross-linking ferulic acids. As a result, the pretreated residues contained mostly cellulosic glucose and lignin. In addition, the pretreatment directly affected the cellulose crystallinity but these variations were dependent upon the biomass type. Important chemical modifications also occurred in lignin since the β-</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our findings provide an enhanced understanding of parameters impacting biomass recalcitrance, which can be easily generalized to both woody and non-woody biomass species. Results indeed suggest that the hemicellulose removal accompanied by the significant reduction in the cross-linking phenolic acids and the redistribution of lignin are strongly correlated with the enzymatic saccharification, by loosening the cell wall structure thus allowing easier cellulase accessibility. By contrast, we have shown that the changes in the syringyl/guaiacyl ratio and the cellulose crystallinity do not seem to be relevant factors in assessing the enzymatic digestibility. Some biomass type-dependent and easily measurable FTIR factors are highly correlated to saccharification.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28191037</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment.</ArticleTitle>
<Pagination>
<MedlinePgn>36</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13068-017-0718-z</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Biorefining of lignocellulosic biomass has become one of the most valuable alternatives for the production of multi-products such as biofuels. Pretreatment is a prerequisite to increase the enzymatic conversion of the recalcitrant lignocellulose. However, there is still considerable debate regarding the key features of biomass impacting the cellulase accessibility. In this study, we evaluate the structural and chemical features of three different representative biomasses (
<i>Miscanthus</i>
×
<i>giganteus</i>
, poplar and wheat straw), before and after steam explosion pretreatment at increasing severities, by monitoring chemical analysis, SEM, FTIR and 2D NMR.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Regardless the biomass type, combined steam explosion pretreatment with dilute sulfuric acid impregnation resulted in significant improvement of the cellulose conversion. Chemical analyses revealed that the pretreatment selectively degraded the hemicellulosic fraction and associated cross-linking ferulic acids. As a result, the pretreated residues contained mostly cellulosic glucose and lignin. In addition, the pretreatment directly affected the cellulose crystallinity but these variations were dependent upon the biomass type. Important chemical modifications also occurred in lignin since the β-
<i>O</i>
-4' aryl-ether linkages were found to be homolytically cleaved, followed by some recoupling/recondensation to β-β' and β-5' linkages, regardless the biomass type. Finally, 2D NMR analysis of the whole biomass showed that the pretreatment preferentially degraded the syringyl-type lignin fractions in miscanthus and wheat straw while it was not affected in the pretreated poplar samples.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our findings provide an enhanced understanding of parameters impacting biomass recalcitrance, which can be easily generalized to both woody and non-woody biomass species. Results indeed suggest that the hemicellulose removal accompanied by the significant reduction in the cross-linking phenolic acids and the redistribution of lignin are strongly correlated with the enzymatic saccharification, by loosening the cell wall structure thus allowing easier cellulase accessibility. By contrast, we have shown that the changes in the syringyl/guaiacyl ratio and the cellulose crystallinity do not seem to be relevant factors in assessing the enzymatic digestibility. Some biomass type-dependent and easily measurable FTIR factors are highly correlated to saccharification.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Auxenfans</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France.</Affiliation>
<Identifier Source="ISNI">0000 0004 1937 0618</Identifier>
<Identifier Source="GRID">grid.11667.37</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crônier</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France.</Affiliation>
<Identifier Source="ISNI">0000 0004 1937 0618</Identifier>
<Identifier Source="GRID">grid.11667.37</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chabbert</LastName>
<ForeName>Brigitte</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France.</Affiliation>
<Identifier Source="ISNI">0000 0004 1937 0618</Identifier>
<Identifier Source="GRID">grid.11667.37</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paës</LastName>
<ForeName>Gabriel</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">0000-0003-0239-9716</Identifier>
<AffiliationInfo>
<Affiliation>FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France.</Affiliation>
<Identifier Source="ISNI">0000 0004 1937 0618</Identifier>
<Identifier Source="GRID">grid.11667.37</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Biofuels</Keyword>
<Keyword MajorTopicYN="N">Biomass</Keyword>
<Keyword MajorTopicYN="N">Enzymatic saccharification</Keyword>
<Keyword MajorTopicYN="N">Lignocellulose</Keyword>
<Keyword MajorTopicYN="N">Pilot scale</Keyword>
<Keyword MajorTopicYN="N">Steam explosion</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>12</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28191037</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-017-0718-z</ArticleId>
<ArticleId IdType="pii">718</ArticleId>
<ArticleId IdType="pmc">PMC5297051</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biotechnol. 2006 Sep 1;125(2):198-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16621087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Chem Biomol Eng. 2011;2:121-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22432613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2015 Oct 26;8(20):3366-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26365899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2014 Oct 29;62(43):10437-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25290760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Jan;128:297-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23201511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Oct;121:8-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22858461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Sep;101(17):6712-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20399643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2014 Jun;27:38-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24863895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Jan;175:350-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25459842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2011 Aug 16;17(34):9529-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21721058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2004 Feb 25;339(3):569-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15013393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2011 Aug 24;59(16):8761-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21749069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2013 Feb;35(2):189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23070624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2005 Feb 28;340(3):417-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Jan;100(1):155-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18664409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Biol. 2011 Nov;334(11):837.e1-837.e11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22078741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jun 22;474(7352):S6-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21697842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Apr;181:7-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25625461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Sep;2(5):933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2005 Spring;121-124:1081-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15930583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Jul;101(13):4851-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20042329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1997 Mar;201(3):311-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Jan;199:49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26321216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Nov;101(21):8224-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20576427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2010 Nov 29;15(12):8641-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21116223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Nov;147:645-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24025853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2006 Aug 9;54(16):5939-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16881698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Apr;133:270-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23428824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2015 Mar 6;117:624-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25498680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2008 Jan;42(2):160-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22578866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>. 2012;5(4):1009-1019</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26366246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2007 Nov;98(16):3061-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17141499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2014 Feb;154:274-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24412855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Nov;26(11):4462-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25381351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Sep;7(9):1579-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22864199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Champagne-Ardenne</li>
<li>Grand Est</li>
</region>
<settlement>
<li>Reims</li>
</settlement>
<orgName>
<li>Université de Reims Champagne-Ardenne</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Grand Est">
<name sortKey="Auxenfans, Thomas" sort="Auxenfans, Thomas" uniqKey="Auxenfans T" first="Thomas" last="Auxenfans">Thomas Auxenfans</name>
</region>
<name sortKey="Chabbert, Brigitte" sort="Chabbert, Brigitte" uniqKey="Chabbert B" first="Brigitte" last="Chabbert">Brigitte Chabbert</name>
<name sortKey="Cronier, David" sort="Cronier, David" uniqKey="Cronier D" first="David" last="Crônier">David Crônier</name>
<name sortKey="Paes, Gabriel" sort="Paes, Gabriel" uniqKey="Paes G" first="Gabriel" last="Paës">Gabriel Paës</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001136 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001136 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28191037
   |texte=   Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28191037" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020